Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina

نویسندگان

  • Kenneth L. Clark
  • Lyn C. Branch
  • Jose L. Hierro
  • Diego Villarreal
چکیده

Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of burrowing species on processes in subsurface soil remain poorly known. We investigated the effects of burrowing and grazing by plains vizcachas (Lagostomus maximus, Chinchilidae), a large colonial burrowing rodent native to South America, on the distribution and dynamics of C and N in soil of a semi-arid scrub ecosystem in central Argentina. In situ N mineralization (Nmin), potential Nmin and CO2 emissions were measured in surface soil (0e10 cm) and soil at the mean depth of burrows (65 ± 10 cm; mean ± 1 SD) in five colonial burrow systems and adjacent grazed and ungrazed zones. Decomposition and N dynamics of vizcacha feces on the soil surface and in burrow soil was assessed using litterbags. Total C and N in soil in burrows were 1.6 and 5.5 times greater than in undisturbed soil at similar depths, and similar to amounts in surface soil. Inorganic N, particularly NO3 , was consistently highest in burrows, intermediate in surface soil on burrow systems, and relatively low in all other zones. Despite high C and N content in all burrows, in situ net Nmin was highly variable in burrow soil. Feces decomposed and released N more rapidly in burrow soil. Laboratory incubations indicated that soil moisture limited Nmin under conditions that typically characterize burrow microclimate, and that rates increased dramatically at soil moisture contents >25% field capacity, which likely occurs during pulsed rainfall events. Thus, the high and seasonally stable NO3 content in burrow soil likely originated from the accumulation of pulsed mineralization events over time. Burrowing and waste deposition by vizcachas produced “resource islands” at the landscape scale. At a measured density of 0.3 burrow systems per hectare, colonial burrow soil contained an amount of inorganic N equal to 21% and 30% of plant-available N in surface soil and subsurface soil, respectively, in an area that represented only 0.35% of the landscape. Our study indicates that burrowing and deposition of waste results in a highly active subsurface layer in which C and N dynamics function much like surface soil when soil moisture is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying Short-Time Dynamics of Vegetation and Soil Organic Carbon in a Semi-arid Rangeland (Case Study: Zharf, Khorasan Province, Iran)

Abstract. Rangeland vegetation dynamics encompass all processes of changes in vegetation composition and structure over time. Investigating the rangeland ecosystem dynamics makes it possible to determine the effects of climatic and management conditions on qualitative and quantitative changes of the vegetation in a specific period of time. Accordingly, data collection and measurements for evalu...

متن کامل

Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia

The large global extension of arid and semi-arid regions together with their widespread degradation give these areas a high potential to sequester carbon. We explored the possibilities of semi-arid ecosystems to sequester carbon by means of rangeland exclusion and afforestation with Pinus ponderosa in NW Patagonia (Argentina). We sampled all pools where organic carbon accumulates in a network o...

متن کامل

Shifting soil resource limitations and ecosystem retrogression across a three million year semi-arid substrate age gradient

The current paradigm of plant nutrient limitation during ecosystem development predicts a change from nitrogen (N) limitation when substrates are young to phosphorus (P) limitation when substrates are old. However, there are surprisingly few direct tests of this model. We evaluated this theory experimentally along a three million year semi-arid substrate age gradient using resource additions to...

متن کامل

Effects of Sandy Desertified Land Reclamation on Soil Carbon Sequestration (Key Study: Kerman province)

Desertification leads to decrease in the ecosystem C pool and attendant reduction in Soil Organic Carbon (SOC). Reclamation of sandy land in arid and semi-arid has a high potential to increase carbon sequestration and improving soil quality. Our objective as to examine the changes in the soil carbon sequestration and soil properties of two soil layers (0–20 and 20-50 cm) under two types of recl...

متن کامل

Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain.

Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has been identifying BSCs as a model ecological sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017